
ON THE WAVE DRAG OF NON ANIXYMMETRIC BODIES 
AT SUPERSONIC SPEEDS 

(0 VOLNOVOM SPOROTIVLENII NEOSESIMMETRICHNYKH TEL 

V SVERKHZVUKOVOM POTOKE) 

PMM Vol.23, No.2, 1959, pp. 376-378 

G. I. MAIKAPAR 

(Moscow) 

(Received 24 December 1958) 

The bodies under consideration belong to a family of pyramids having 

polygonal cross sections with reentrant or concave corners. The surface 

of such a body is formed by stream surfaces behind plane shock waves, and 

the straight outer edges of the body appear as linear intersections of 

the plane shock waves. For such a class of bodies, a simple dependence of 

the wave drag on the geometrical characteristics is developed for given 

design conditions. 

Fig. 1. 

Heretofore the only class of bodies for which relatively simple and 

exact wave drag solutions have been obtained were circular cones. It is 

therefore of interest to consider other families of bodies for which the 

wave drag is easily found even though these families may be relatively 

narrow and the solutions for isolated “design” Mach numbers. Such a class 

of bodies is studied here. They are pyramids, with or without internal 

flow, having cross-sections in the form of reentrant polygons (see Figs. 

1 and 4). The surface of such a body is formed by the stream surface 

behind a configuration of plane shock waves which intersect along (with- 
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out extending beyond) the straight convex edges of the pyramids.* 

Let us consider a body with a cross-section in the shape of a regular 

reentrant polygon (Fig. 1). 

The velocity components behind the oblique shock wave are: 

Here 

27% = V [I - (1 -E) (sirPy-sin’o)] 

uy = V ctg y (I- E) (sin2 y - sinlo) 

1 =co sino = - = 
M 7’ 

cp-c u 1 e=-.= - 

cp + cu 8 

From (1) and (2) we obtain the tangent of the angle 

axis and the reentrant rib: 

ta 6 ctg2 y (1-c) (sin2 y - sin% 0) 
Ig= 1 - (1 -c) (sin2 y - sin2 CO) = ’ 

The functional dependence r = T (y) is shown in Fig. 

the base cross section at x = 1 is: 

(1) 
(2) 

between the body 

(3) 

2. The area of 

x (I- E) (sin2 y - sin2 0) 
’ = ’ tg t tg Y tg ’ = lZ tg n 1 _ (I_ E) (sin2 y _ sin2o) 

An “equivalent” circular cone with equal base area has a half nose 

angle 8, such that 

tg e,= 
J 2 tg Z 

(l- E) (sin2 y - sin2 63) 
I- (I- E) (sin” y - sin2 0) 

The air pressure behind the shock is given by 

p = (i- C)P~ V2 ( sin2 y - -j-& sin2 w ) 

and the pressure coefficient is 

p= p---P, = 2 (I- c) (sin2 y - sin” 0) (6) 
Qco 

From equations (5) and (6) follows a simple relation between the angle 

of the equivalent cone and the pressure coefficient (wave drag coefficient) 

which does not depend on Mach number: 

l For constructing such bodies one may also use a group of plane shocks, 

for instance three shocks intersecting in a single point, and also 
suitable cylindrical shocks. 
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(7) 

Equation (8) facilitates comparison between the wave drag of the pre- 
sent class of bodies and that of the circular cones. One must bear in 
mind, however, that for each Mach number the body shape is different. 

Fig. 2. Fig. 3. 

The drag coefficients. referred to that of a circular cone at M = 00 
as unity, are shown in Fig. 4. The upper set of curves labelled with the 
corresponding values of M refer to circular cones. 

The same figure displays a series of cross sections of the pyramidal 
bodies equivalent in area to the circular cone with 8, = 15’ at different 
Mach numbers. 

The case of an asymmetric pyramidal body shown in Fig. 5. may be of 

interest. It resembles a (delta) wing with empennage. In this case the 

velocity components behind the shock wave are: 

vz = V [I- (1 - c) (sin2 y - sin2 o)] (9) 

vy = V etg a (Z- E) (sin2 y - sin2 w) (10) 
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Fig. 4. 

Fig. 5. 

Us = V ctg @ (i-c) (sin* y -sinew) 

sin Y = (1 + ctg2 a f ctgs p)-‘ia 

WI 

The area of 
Fig. 4) equals 

one quarter of the cross section at x = 1 (right side of 

i tga 
s=z t8p+ ( 

:B 
> 

(I- c) (sine y - sifP 0) 

tg a l-((l-~)(sin~y-sina~) (12) 

The equations (3) and (6) for tan 6 and iT remain valid. When M + m and 
E + 0. the reentrant corners of the polygon straighten out. 

Translated by M.V.M. 


